| $\quad$ | 
 
  | 
| 	1	 | (	(2017/Myanmar/q07b)	)		 A binary operation $\odot$ on $R$ is defined by $x \odot y=y^{x}+2 x^{y} y^{x}-x^{y}$. Evaluate $(2 \odot 1) \odot 1$. (5 marks)	
 
  | 
| 	2	 | (	2011	)		Let $R$ be the set of real numbers and a binary operation $\odot$ on $R$ be defined by $a \odot b=\frac{a^{2}+b^{2}}{2}-a b$ for $a, b \in R$. Find the values of $3 \odot 1$ and $(3 \odot 1) \odot 4$. Find the values of $x$ such that $x \odot 2=x+2$. (5 marks)	
 
  | 
| 	3	 | (	2012	)		Let $R$ be the set of real numbers and a binary operation $\odot$ on $R$ be defined by$$x \odot y=\frac{4 x^{2}+y^{2}}{2}-2 x y \quad \text { for } x, y \in R$$ Find the values of $3 \odot 2$ and $(3 \odot 2) \odot 16$. If $a$ and $b$ are two real numbers such that $a \odot b=8$, find the relation between $a$ and $b$. (5 marks)	
 
  | 
| 	4	 | (	2013	)		 Let $R$ be the set of real numbers and a binary operation $\odot$ on $R$ be defined by $a \odot b=2 a b-a+4 b$ for $a, b \in R .$ Find the values of $3 \odot(2 \odot 4)$ and $(3 \odot 2) \odot 4 .$ If $x \odot y=2$ and $x \neq-2$, find the numerical value of $y \odot y$. (5 marks)	
 
  | 
| 	5	 | (	2014	)		The operation $\odot$ is defined by $x \odot y=x^{2}-4 x y-5 y^{2}.$ Calculate $5 \odot 4$. Find the possible values of $x$ such that $x \odot 2=28$. $\qquad\mbox{  (5 marks)}$	
 
  | 
| 	6	 | (	2014	)		Given that $a \odot b=a^{2}+\frac{6 a}{b}+4$, find the value of $(3 \odot 9) \odot 1$. Solve the equation $3 \odot \mathrm{y}=22$. $\qquad\mbox{  (5 marks)}$	
 
  | 
| 	7	 | (	(2016/Myanmar/q07b)	)		 A binary operation $\odot$ on $R$ is defined by $x \odot y=x^{2}-2 x y+2 y^{2}$. Find $(3 \odot 2) \odot 4$. If $(3 \odot k)-(k \odot 1)=k+1$, find the values of $k$. (5 marks)	
 
  | 
| 	8	 | (	(2017/FC/q07b)	)		 Let $\mathrm{R}$ be the set of real numbers and a binary operation $\odot$ on $\mathrm{R}$ be defined by $a \odot b=2 a b-a+4 b$ for $a, b \in R$. Find the values of $3 \odot(2 \odot 4)$ and $(3 \odot 2) \odot 4$. If $x \odot y=2$ and $x \neq-2$, find the $\begin{array}{ll}\text { numerical value of y } \mathrm{y} & \text { y. } & (5 \mathrm{marks})\end{array}$	
 
  | 
| 	9	 | (	2011	)		A binary operation $\odot$ on the set of integers is defined by $a \odot b=$ the remainder when $(a+2 b)$ is divided by 4. Find $(1 \odot 3) \odot 2$ and $1 \odot(3 \odot 2)$. Is $\odot$ commutative? Why? (5 marks)	
 
  | 
| 	10	 | (	2011	)		Let $R$ be the set of real numbers and a binary operation $\odot$ on $R$ be defined by $x \odot y=x y-x+y$ for $x, y \in R$. Find the values of $(2 \odot 1) \odot 3$ and $2 \odot(1 \odot 3)$. Is this binary operation associative? Prove your answer. (5 marks)	
 
  | 
| 	11	 | (	2011	)		Let $R$ be the set of real numbers and a binary operation $\odot$ on $R$ be defined by $a \odot b=a b+a+b$ for $a, b \in R$. Find the values of $2 \odot(3 \odot 4)$ and (2 \odot 3) $\odot 4$. Is this binary operation associative? Prove your answer. (5 marks)	
 
  | 
| 	12	 | (	(2019/FC/q07a)	)		 A binary operation $\odot$ on the.set $\mathrm{R}$ of real numbers is defined by $\mathrm{x} \odot \mathrm{y}=\mathrm{x}^{2}+\mathrm{y}^{2}$. Evaluate $[(1 \odot 3) \odot 2]+[1 \odot(3 \odot 2)]$. Show that $x \odot(y \odot x)=(x \odot y) \odot x.$ (5 marks)	
 
  | 
| 	13	 | (	2012	)		Given $(3 a-b) \odot(a+3 b)=a^{2}-3 a b+4 b^{2}$, evaluate $4 \odot 8$. (5 marks)	
 
  | 
| 	14	 | (	2010	)		The binary operation $\odot$ on $R$ is defined by $a \odot b=(2 a+3 b) b$ where $a, b \in R$.Calculate $6 \odot(3 \odot 4)$.Find the values of $y$ if $2 \odot y=95$.$\text{ (5 marks)}$	
 
  | 
| 	15	 | (	2010	)		A binary operation $\odot$ on $R$ is defined by $a \odot b=a^{2}-2 a b+b^{2}$.Show that $\odot$ is commutative.If $(3 \odot k)-(2 k \odot 1)=k-28$, find the values of $k$.$\text{ (5 marks)}$	
 
  | 
| 	16	 | (	2011	)		A binary operation $\odot$ is defined on $R$ by $a \odot b=a(2 a+3 b)$, for all real numbers $a$ and $b$. Find $(1 \odot 1) \odot 2$ and $1 \odot(1 \odot 2)$. Find the values of $b$ such that $b \odot 3=26$. (5 marks)	
 
  | 
| 	17	 | (	2011	)		Let $J^{+}$be the set of all positive integers. A binary operation $\odot$ on the set $J^{+}$is defined by $a \odot b=a^{2}+a b+b^{2}$. Prove that the binary operation is commutative. Find the value of $x$ such that $2 \odot x=12$. (5 marks)	
 
  | 
| 	18	 | (	2013	)		 The binary operation $\odot$ on $R$ is defined by $x \odot y=x^{2}+3 x y-2 y^{2}$. Find $2 \odot 1$. If $x \odot 2=-13$, find the values of $x$. (5 marks)	
 
  | 
| 	19	 | (	2013	)		 Giving that $a \odot b=a^{2}+\frac{6 a}{b}+4, b \neq 0$. Find the value of $(4 \odot 8) \odot 1$ and solve the equation $x \odot 3=12$. (5 marks)	
 
  | 
| 	20	 | (	2013	)		 If $a \odot b=a^{2}-3 a b+2 b^{2}$, find $(-2 \odot 1) \odot 4$. Find $p$ if $(p \odot 3)-(5 \odot p)=3 p-17$. (5 marks)	
 
  | 
| 	21	 | (	2014	)		The operation $\odot$ on the set $N$ of natural numbers is defined by $x \odot y=x^{y}$. Find the value of a such that $2 \odot a=(2 \odot$ 3) $\odot 4$. Find also $b$ such that $2\odot(3\odot b)=512.$   (5 marks)	
 
  | 
| 	22	 | (	2010	)		The operation $\odot$ is defined by $x \odot y=x^{2}+x y-3 y^{2}, x, y \in R$.If $4 \odot x=17$, find the possible values of $x$.Find also $(2 \odot 1) \odot 3$.$\text{ (5 marks)}$	
 
  | 
| 	23	 | (	2010	)		The operation $\odot$ is defined by $x \odot y=x^{2}+3 x y-y^{2}$ for $x, y \in R$.Find the possible values of $x$ such that $x \odot 2=3 .$ Find also $(5 \odot 4) \odot 2$.$\text{ (5 marks)}$	
 
  | 
| 	24	 | (	2013	)		 The operation $\odot$ is defined by $x \odot y=x^{2}+x y-3 y^{2}, x, y \in R$. If $4 \odot x=17$. find the possible values of $x$. Find also $(2 \odot 1) \odot 3$. (5 marks)	
 
  | 
| 	25	 | (	2013	)		 A binary operation $\odot$ on $R$ is defined by $a \odot b=a^{2}-2 a b+2 b^{2}$  Find $(3 \odot 2) \odot 4 .$ If $(3 \odot k)-(k \odot 1)=k+1$, find the value of $k$. (5 marks)	
 | 
| $\quad$ | 
  | 
| 	1	 | 	 $4,(x \neq 0, y \neq 0)$
  | 
| 	2	 | 	$2 ; 2 ; x=0$ (or) 6
  | 
| 	3	 | 	$3 \odot 2=8 ;(3 \odot 2) \odot 16=0,2 a-b=\pm 4$
  | 
| 	4	 | 	 $3 \odot(2 \odot 4)=297 ;(3 \odot 2) \odot 4=135 ; y \odot y=2$ 
  | 
| 	5	 | 	$-135, x=-4$ (or) $12 $
  | 
| 	6	 | 	$319, y=2 \quad$ 
  | 
| 	7	 | 	 $k=2$ or 3
  | 
| 	8	 | 	 279,135,2
  | 
| 	9	 | 	$3;3;$ No 
  | 
| 	10	 | 	5;13;No $(2\odot 1)\odot 3\not= 2\odot (1\odot 3)$
  | 
| 	11	 | 	59; 59; Yes $(a\odot b)\odot c=a\odot (b\odot c)$
  | 
| 	12	 | 	274
  | 
| 	13	 | 	$4 \odot 8=8$
  | 
| 	14	 | 	$16416 ;-\frac{19}{3}, 5$
  | 
| 	15	 | 	$-4,3$
  | 
| 	16	 | 	$80 ; 26 ; 2$ (or) $-\frac{13}{2}$
  | 
| 	17	 | 	$x=2$
  | 
| 	18	 | 	 $2 \odot 1=8 ; x=-5($ or $)-1$
  | 
| 	19	 | 	 $(4 \odot 8) \odot 1=671 ; x=-4$ (or) 2
  | 
| 	20	 | 	 $(-2 \odot 1) \odot 4=32 ; p=5$ (or) $-2 \quad$ 
  | 
| 	21	 | 	$a=12, b=2.$ 
  | 
| 	22	 | 	$\frac{1}{3}, 1 ;-9$
  | 
| 	23	 | 	$-7,1 ; 5171$
  | 
| 	24	 | 	 $x=\frac{1}{3}$ (or) $1 ;(2 \odot 1) \odot 3=-9 \quad$ 
  | 
| 	25	 | 	 $(3 \odot 2) \odot 4=17 ; k=3$ (or) 2
 | 
إرسال تعليق